
1

Chapter 1
Introduction

For a while now, Agile development has been problematic for Android

developers. There have been a number of ways to test the user interface (UI),

such as Robotium or Monkey Runner, but before Android Studio 1.1,

unit testing was hard to use, hard to configure, and quite challenging to

implement on the Android platform.

Google would argue, no doubt, that in the past you could use JUnit3-style

unit testing. But for anyone from classic Java development this was a

dramatic backward step in time. Developers would stumble along hacking

together a JUnit4 development environment using a number of third-party

tools. More likely than not they would simply give up as the ever-increasing

series of mutually incompatible library dependencies would finally wear them

down. Because there simply wasn’t the toolbox for the Android developer,

Agile development on the mobile platform was immature and reminiscent of

Java development in the early 2000s.

Thankfully all this has changed - Android now supports JUnit4 and Android

developers can now return to unit testing. It’s early days yet in the world

of Android JUnit4 testing world and the documentation is thin on the

ground, so in this book we’re going to show practical ways to get your

unit testing up and running using Android Studio. We’ll also look at how

this can be complemented by other UI-specific Android testing libraries

such as Espresso to create a complete Agile testing framework for Android

developers.

T
h

is
 b

o
o

k
 w

a
s
 p

u
rc

h
a

s
e

d
 b

y
 g

o
d

fr
e

y
@

ri
is

.c
o

m

CHAPTER 1: Introduction2

Hello, World Unit Test
Before we go any further let’s look at a simple unit test. For demonstration

purposes we can use the Add method from the Google Calculator example,

which is available from https://github.com/googlesamples/android-testing

(see Listing 1-1).

Listing 1-1. Add Method from Google's Calculator Example

public double add(double firstOperand, double secondOperand) {
 return firstOperand + secondOperand;
}

Listing 1-2 shows a very simple unit test, which tests if the Add method can

add two numbers correctly.

Listing 1-2. Test Method for Add Method from Calculator Example

@Test
public void calculator_CorrectAdd_ReturnsTrue() {
 double resultAdd = mCalculator.add(3, 4);
 assertEquals(7, resultAdd, 0);
}

Unit tests use assertions to make sure the method provides an expected

result. In this case we’re using assertEquals to see if the Add method returns

7 when adding 3 to 4. If the test works, then we should see a positive or

green result, and if it doesn’t, then we’ll see a red result in Android Studio.

Understand the Benefits of Using an Agile
Approach to Android Development
If you’re new to Agile development you’re probably wondering how Agile

can improve the development process.

At its most basic, Agile, and unit testing in particular, helps you to

Catch more mistakes, earlier in the development

process

Confidently make more changes

Build in regression testing

Extend the life of your codebase

CHAPTER 1: Introduction

3

If you write unit tests and they cover a significant portion of your code then

you’re going to catch more bugs. You can make simple changes to tidy up

the code or more extensive architectural changes, run your unit tests, and,

if they all pass, be confident that you didn’t introduce any subtle defects.

The more unit tests you write, the more you can regression test your app

whenever you change the code without fear. And once you have a lot of unit

tests, then it becomes a regression test suite that allows you to have the

confidence to do things you wouldn’t otherwise attempt.

Unit tests mean you no longer have to program with a “leave well enough

alone” mind-set. You can now make significant changes (changing to a new

database, updating your back-end application programming interface (API),

changing to a new material design theme, etc.) and be confident that your

app is behaving the same as before you made the changes since all the

tests execute without any errors.

Explore the Agile Testing Pyramid for Android
There are several types of tests you need in your test suite to make sure

your app is fully tested. You should have Unit Tests for the component-

or method-level functionality, API or Acceptance Tests for any back-end

RESTful APIs, and GUI (graphical user interface) Tests for Android activities

and general application workflow.

The classic Agile Test Pyramid first appeared in Succeeding with Agile by

Mike Cohn (Pearson Education, 2010). This is a good guide for the relative

quantity of each type of test your app is going to need (see Figure 1-1).

Manual

Tests

GUI

Tests

Acceptance Tests

(API Layer)

Unit Tests / Component Tests

Figure 1-1. Agile Test Pyramid

CHAPTER 1: Introduction4

Create Hello World Unit Test in Android
In the following example we show how to create our simple unit test

example in Android Studio. This should return true assuming adding two

numbers in the calculator Android app works correctly.

To set up and run a unit test you need to perform the following tasks:

Prerequisites: Android Plugin for Gradle version 1.1.x

Create the src/test/java folders

Add JUnit:4:12 dependency in build.gradle (app) file

Choose unit tests’ test artifact in Build Variant

Create unit tests

Right-click tests to run tests

Click File ➤ Project Structure and make sure the Android Plugin version is

greater than 1.1. In Figure 1-2 the Android Plugin version is 1.2.3 so we’re

good to go.

Figure 1-2.

Next we need to create the src/test/java folders for our unit test code.

For the moment this seems to be hard-coded to this directory. So change to

Project view to see the file structure and create the folders (see Figure 1-3).

Alternatively, in Windows create the folders using the file explorer or on a

Mac use the command line on a terminal window to make the changes.

Don’t be worried if the folders don’t show up when you go back to the

Android view in Android Studio. They’ll show up when we change to unit

tests in the Build Variant window.

CHAPTER 1: Introduction

5

Add junit library to the dependencies section in the build.gradle (app) file

as shown in Figure 1-4.

Figure 1-3. Change to Project view

CHAPTER 1: Introduction6

Choose the Unit Tests test artifact in Build Variants and use the debug build

(see Figure 1-5). The test code directory should now also appear when

you’re in the Android view of your app.

Figure 1-4. Modify the build.gradle file

Figure 1-5. Choose Unit Tests in Build Variant

CHAPTER 1: Introduction

7

Create the Unit Tests code for our simple example. We need to import the

org.junit.Before so we can create a Calculator object. We need to import

org.junit.Test to tell Android Studio that we’re doing unit tests. And as

we’re going to do an assertEquals, we also need to import org.junit.
Assert.assertEquals (see Listing 1-3).

Listing 1-3. Unit Test Code

package com.riis.calculatoradd;

import org.junit.Before;
import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class CalculatorTest {

 private Calculator mCalculator;

 @Before
 public void setUp() {
 mCalculator = new Calculator();
 }

 @Test
 public void calculator_CorrectAdd_ReturnsTrue() {
 double resultAdd = mCalculator.add(3, 4);
 assertEquals("adding 3 + 4 didn't work this time", 7, resultAdd , 0);
 }
 }

Right-click the CalculatorTest java file and choose Run ’CalculatorTest’ to

run tests (see Figure 1-6).

CHAPTER 1: Introduction8

You can see the results of the tests in the Run windows (see Figure 1-7). You

may also want to click the configuration gear and choose Show Statistics to

see how long the tests take.

Figure 1-7. Test results

Figure 1-6. Running the unit test

If your tests are successful they show as green, and anything that produces

an error is shown in red. All your tests should be green before you continue

with any coding.

GUI Tests
The real beauty of unit testing is that you don’t need an emulator or physical

device to do your testing. But, if we look back at our Agile Testing Pyramid

(Figure 1-1) we know that we’re going to need some GUI tests. Remember,

GUI tests are tests on Activities and unit tests are tests on individual

methods in your code. We won’t need as many GUI tests as unit tests, but

we’re still going to have to test every activity for happy paths as well as not

so happy paths.

CHAPTER 1: Introduction

9

When it comes to testing GUI we have a few frameworks that we can

choose from: we can use the Android JUnit3 framework, Google’s Espresso,

UIAutomator, Robotium, or some Cucumber-type Android framework such

as Calabash. In this book we’ll use Google’s Espresso as it’s quick and easy

to set up and it also has support for Gradle and Android Studio. But your

author has used the other frameworks in the past and they all have their

benefits.

Espresso has three components: ViewMatchers, ViewActions, and

ViewAssertions. ViewMatchers are used to find a view, ViewActions allow

you to do something with a view, and ViewAssertions are similar to unit

test assertions—they let you assert that the value in the view is what you’d

expect or not.

Listing 1-4 shows a simple example of an Espresso GUI test. We’re adding

two numbers again, but this time we’re doing it by interacting with the GUI,

not calling the underlying method.

Listing 1-4. Adding Two Numbers Using Espresso

public void testCalculatorAdd() {

 onView(withId(R.id.operand_one_edit_text)).perform(typeText(THREE));
 onView(withId(R.id.operand_two_edit_text)).perform(typeText(FOUR));
 onView(withId(R.id.operation_add_btn)).perform(click());
 onView(withId(R.id.operation_result_text_view)).check(matches(withText

(RESULT)));
}

In this example withId(R.id.operand_one_edit_text) is one of the

ViewMatchers in the code and perform(typeText(THREE) is a ViewAction.

Finally check(matches(withText(RESULT)) is the ViewAssertion.

Create Hello, World GUI Test
This time we show how to create our simple GUI test example in Android

Studio. As with the unit test, this one should return true assuming that

adding two numbers in the calculator Android app works correctly.

To set up and run a GUI test you need to perform the following tasks:

Prerequisites: install the Android Support Repository

Put the test classes in the src/androidTest/java folders

Add Espresso dependency in build.gradle (app) file

4

CHAPTER 1: Introduction10

Choose Android Test Instrumentation Test Artifact in

Build Variant

Create GUI tests

Right-click tests to run tests

Click Tools ➤ Android ➤ SDK Manager, click the SDK tools tab, and make

sure the Android Support Repository is installed (see Figure 1-8).

Figure 1-8. Android SDK Manager

By default, Android Studio creates a src/androidTest/java folder when you

create the project using the project wizard so you shouldn’t have to create

any new directory. If you can’t see it, then check that the Test Artifact in the

Build Variant window is set to Android Instrumentation Tests (see Figure 1-9).

CHAPTER 1: Introduction

11

Add the following Espresso libraries (see Listing 1-5) to the build.gradle

(app) file in the dependencies section and click the Sync Now link. Open the

Gradle console as this may take a minute or two.

Listing 1-5. Espresso Libraries

dependencies {
 androidTestCompile 'com.android.support.test:testing-support-lib:0.1'
 androidTestCompile 'com.android.support.test.espresso:espresso-core:2.0'
}

The code in Listing 1-6 shows how we set up and run the GUI test

to add 3 + 4 and how we assert that this is 7.0. In order to test

Android activities we need to extend the CalculatorAddTest with the

ActivityInstrumentationTestCase2 class. This allows you to take control of

the activities. We do this in the setUp() method using the getActivity() call.

Listing 1-6. Adding Two numbers Using Espresso

import android.test.ActivityInstrumentationTestCase2;

import static android.support.test.espresso.Espresso.onView;
import static android.support.test.espresso.action.ViewActions.click;
import static android.support.test.espresso.action.ViewActions.typeText;
import static android.support.test.espresso.assertion.ViewAssertions.matches;
import static android.support.test.espresso.matcher.ViewMatchers.withId;
import static android.support.test.espresso.matcher.ViewMatchers.withText;

public class CalculatorAddTest extends ActivityInstrumentationTestCase2<
CalculatorActivity> {

Figure 1-9. Build Variant test artifacts

T
h

is
 b

o
o

k
 w

a
s
 p

u
rc

h
a

s
e

d
 b

y
 g

o
d

fr
e

y
@

ri
is

.c
o

m

CHAPTER 1: Introduction12

 public static final String THREE = "3";
 public static final String FOUR = "4";
 public static final String RESULT = "7.0";

 public CalculatorAddTest() {
 super(CalculatorActivity.class);
 }

 @Override
 protected void setUp() throws Exception {
 super.setUp();
 getActivity();
 }

 public void testCalculatorAdd() {

 onView(withId(R.id.operand_one_edit_text)).perform(typeText(THREE));
 onView(withId(R.id.operand_two_edit_text)).perform(typeText(FOUR));
 onView(withId(R.id.operation_add_btn)).perform(click());
 onView(withId(R.id.operation_result_text_view)).check(matches

(withText(RESULT)));
 }
}

In the code we first connect to the Calculator Activity and then use the

ViewMatcher and ViewActions to put the numbers 3 and 4 in the correct text

fields. The code then uses a ViewAction to click the Add button and finally

we use the ViewAssertion to make sure the answer is the expected 7.0. Note

that the GUI displays the result as a double, so it’s 7.0 and not 7 as you

might expect (see Figure 1-10).

